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Abstract-The extended-finite element method (X-FEM) is used 

for crack analysis of orthotropic and isotropic functionally-

graded composite material (FGCM) plate with slanted crack 

under thermal loadings. The enrichments functions of 

discontinuity are implemented. Mixed-mode SIFs are 

calculated in isotropic and orthotropic FGMs. Gaussian 

technique (Q4) has been applied in  numerical calculation of 

interaction of solution. Thermal effects, fundamental 

equations, the interaction integral of non-homogeneous cases 

(M-integral), and proposal numerical integration rule are set to 

simulate and to debate the accuracy of the present work results 

in comparing with the results of the references that available in 

the literature. In addition, the effect of size of crack is studied 

to discuss the values of energy release rate and stress intensity 

factors with different crack angles. The present study is 

implemented by using MATLAB program to present steady 

state thermo XFEM fracture analysis of isotropic and an 

isotropic FG plate with inclined center crack.  

Keywords: XFEM, orthotropic (anisotropic) and isotropic 

functionally-graded composite material (FGCM), thermal 

load, stress intensity factors 

1. INTRODUCTION 

Evolution of technology and science in the contemporary 

time has generated up-to-date challenges for scientists and 

engineers by applying modern materials. Need to use 

accession for model of difficult trait in the relevant cases is 

of a desired significance, principally at status of different 

mechanical and thermic loadings. Steel or other related 

homogenous cases can give a good performance under 

mechanical loads but can be less than its efficiency under the 

influence of thermal loads while other materials as like 

ceramics resist the thermal load effects more than the 

resistance to mechanical loads. The aim of construction of 

material specifications has put scientists and engineers to 

product orthotropic and isotropic functionally graded 

materials (FGMs) and composite materials. FGMs are 

progressively replacing composite materials in layers in 

various applications from high-tech metiers to traditional 

industrials. 

 In FGMs, the smooth variable conception in properties as 

porosity, microstructure, and composition in these related 

materials, that gives in penchant of different specifications 

such as impact load and high heat gradients, have extended 

throughout whole important modern industries that require 

the provision of related properties [1]. Examples of such 

material applications include shell casing of rockets, lining 

materials with shafts, aircraft wings, and modern electronic 

device connectors. 

The study of thermal effects on FGMs is of a great 

importance for two causes. First, functionally graded 

materials are influenced by temperature through the process 

of manufacturing and second, the related materials are often 

utilized in relevant applications under different thermal 

gradients. Therefore, research of thermal stresses in FGMs 

is indispensable. So, heat conduction and related effect 

conditions are essential in an isotropic and an anisotropic FG 

cases [2, 3]. 

Fracture analysis in FGM is studied empirically with various 

cases such shock force [4, 5], crack growth [6, 7], dynamic 

fracture [8], bi-material FGMs [9] and crack in thermal 

barrier coatings [10]. Several researches are done in 

discontinuity study in FGMs. The biggest part of works for 

related materials are applied via adopt the numerical 

techniques instead of theoretic procedures as a result of 

insufficiency to theoretically solution for such complex 

cases. 

The stress intensity factors computation in an isotropic 

(changing properties in one direction) and orthotropic 

(changing properties in two direction) FGMs, the stresses 

singularities in near of crack-tip suppose themselves of an 

isotropic materials [11]. Dolbow and Gosz [12] submitted an 

approach to study of FG cases that representation of 

approximation crack tip regions coincide these ones of 

identical materials. Rao and Rahman [13] presented the 

meshfree method (EFGM) in computing crack terms of 

homogenous FG cases via using (M) integrals in terms of 

homogenous and non-homogenous auxiliary terms. 

Furthermore, Kim and Paulino [14,15] presented expended 

development on the analysis of fracture of FGMs by using 

finite element method. Dai et al. [16], Sladek et al. [17], 

Khazal et al. [18] used meshfree methods for analysis the 

crack problems in functionally graded materials. 
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Simultaneously with regard to thermal loads, Hasselman and 

Youngblood illustrated demeanor of conductivity gradient 

effect in nonhomogeneous material [19], and the asymptotic 

field of crack propagation was debated via Abotula et al. [20 

]. Noda and Jin studied the fracture in FGM in semi finite 

medium for complete isolated [21], at the same time, Borgi 

and Erdogan considered the fracture applied partially 

insulation [22, 23] and cracked FGM is applied partly 

isolated via supposing heat decrease through regions of 

crack via Ding and Li [24]. Many researchers studied the 

thermal fracture parameters for isotropic and orthotropic 

FGMs by using numerical methods (FEM and XFEM) and 

new related development techniques [25-29]. Numerically, 

XFEM is an exquisite technique to model the discontinuity. 

Extended finite element method is the development of the 

classic and conventional FEM that applies enhancement 

functions at specific region by employing properties of 

partition of unity (PU) and heavy-set functions.  

The aim of the current research is to represent the isotropic 

and anisotropic FGMs with Inclined center crack under 

thermal loadings by applying XFEM. Gauss quadrature rule 

(Q4) is applied for numerical interaction rather than using 

sub-triangulation method that used in [29] to reduce time 

cost and to remove non-coincide integrated points about 

crack surfaces and tips with give same level of accuracy. 

Several lengths to the crack are taken into account to predict 

the magnitude of fracture energy released. Many of the 

parameters have been obtaining and presentation in the 

results to have more inclusive research. 

2. CRACK-TIP REGION IN FG CASES 

Thermal term (휀𝑡ℎ) could be depicted in following equation,  

휀𝑡 = 휀𝑚 + 휀𝑡ℎ                                                                   (1) 

where 휀𝑡  and  휀𝑡ℎare total, mechanical and strain, 

respectively. 휀𝑚 can be expressed in [30] 

휀𝛼
𝑚 = 𝛼𝛼𝛽𝜎𝛽                 (𝛼, 𝛽 = 1,2,6)                                (2) 

where 

휀1 = 휀11 ,    휀2 = 휀22 ,     휀6 = 2휀12                                    (3) 

𝜎1 = 𝜎11 ,    𝜎2 = 𝜎22 ,     𝜎6 = 𝜎12                                    (4) 

hence,  

[

𝑎11 𝑎12 𝑎16
𝑎12 𝑎22 𝑎26
𝑎16 𝑎26 𝑎66

] = [

𝑠1111 𝑠1122 2𝑠1112
𝑠2211 𝑠2222 2𝑠2212
2𝑠1211 2𝑠1222 4𝑠1212

]               (5)
 

where  𝑠𝑖𝑗𝑘𝑙  are the components of material compliance 

tensor.  

휀𝑖𝑗
𝑚 = 𝑠𝑖𝑗𝑘𝑙𝜎𝑘𝑙                   (𝑖, 𝑗, 𝑘, 𝑙 = 1,2,3)                         (6)                                                            

for plane strain, a  
can replace with 

(𝑎𝑖𝑗 −
𝑎𝑖3𝑎𝑗3

𝑎33
) → 𝑎𝑖𝑗                                                           (7) 

In addition, 
th

ij can be written as 

{
 
 

 
 휀11

𝑡ℎ

휀22
𝑡ℎ

휀33
𝑡ℎ

2휀12
𝑡ℎ
}
 
 

 
 

= {

𝜆11
𝜆22
𝜆33
𝜆12

}∆𝑇                                                         (8) 

where 𝜆𝑖𝑗
 
is expressed thermal expansion coefficient term 

𝛼𝑖𝑗
 
for plane stress states 

𝜆11 = 𝛼11 ,  𝜆22 = 𝛼22 ,  𝜆33 = 𝛼33  ,  𝜆12 =  0            (9) 

and for plane strain problems, 

𝜆11 = 𝜈31𝛼33 + 𝛼11 ,       𝜆22 = 𝜈32𝛼33 + 𝛼22 ,          

 𝜆33 = 𝛼33  ,      𝜆12 =  0                                                (10) 

 

3. STRESS INTENSITY FACTORS 

 3.1. J-integral 

Three different formulations are used in the literature access 

SIFs in FGMs, involving non-equilibrium, non-

compatibility, and constant-constitutive-tensor 

formulations, as suggested via [31-32].At current research, 

non-compatibility condition is applied for calculating J-

integral for reason that it demands lower intricate 

derivatives. The non-compatibility conditions rely upon: 

𝜎𝑖𝑗 = 𝑐𝑖𝑗𝑘𝑙(𝑥)휀𝑘𝑙
𝑚  ,     𝜎𝑖𝑗,𝑗 = 0                                         (11) 

휀𝑖𝑗
𝑡 ≠

1

2
(𝑢𝑖,𝑗 + 𝑢𝑗,𝑖)                                                          (12) 

In terms of the equivalent domain formulation for an 

arbitrary contour (as shown in Fig. 1), the J-integral can be 

written as  

𝐽 = ∫ (𝜎𝑖𝑗𝑢𝑖,1 − 𝑤𝛿1𝑗)𝑞,𝑗𝑑𝐴 + ∫ (𝜎𝑖𝑗𝑢𝑖,1 −𝑤𝛿1𝑗),𝑗
𝑞𝑑𝐴

𝐴𝐴
    (13) 

The domain of J integral could be shown in Fig. 1.  

In addition, the strain-energy term equals to   

𝑤 =
1

2
(𝜎11휀11

𝑚 + 𝜎22휀22
𝑚 + 2𝜎12휀12

𝑚)                                (14) 

that could be expressed in plane stress cases  

𝑤 =
1

2
(𝜎11휀11

𝑚 + 𝜎22휀22
𝑚 + 𝜎33휀33

𝑚 + 2𝜎12휀12
𝑚)                (15) 

and in plane strain cases, 

휀33
𝑡 = 0 → 휀33

𝑚 = −휀33
𝑡ℎ = −𝛼33∆𝑇                               (16) 
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Fig.1 The domain integral.  

 

3.2. Interaction Integral Method 

The interaction integral method is adopted for determine 

modes values of SIFs:  

𝐽𝑠 = 𝐽 + 𝐽𝑎𝑢𝑥 +𝑀𝑙                                                         (17) 

where 

𝜎𝑖𝑗
𝑎𝑢𝑥𝑢𝑖,1𝑗 =

1

2
𝜎𝑖𝑗
𝑎𝑢𝑥(𝑢𝑖,1𝑗 + 𝑢𝑗,1𝑖) = 𝜎𝑖𝑗

𝑎𝑢𝑥휀𝑖𝑗,1
𝑡 =

𝜎𝑖𝑗
𝑎𝑢𝑥(휀𝑖𝑗,1

𝑚 + 휀𝑖𝑗,1
𝑡ℎ )                                                            (18) 

the interaction integral 𝑀𝑙 can be expressed as 

𝑀𝑙 = 𝑀𝑚 +𝑀𝑡ℎ                                                             (19) 

with some modification, 𝑀𝑚 should be defined as [31-32] 

𝑀𝑚 = ∫ {𝜎𝑖𝑗𝑢𝑖,1
𝑎𝑢𝑥 + 𝜎𝑖𝑗

𝑎𝑢𝑥𝑢𝑖,1
𝐴

−
1

2
(𝜎𝑖𝑘휀𝑖𝑘

𝑎𝑢𝑥 + 𝜎𝑖𝑘
𝑎𝑢𝑥휀𝑖𝑘

𝑚)𝛿1𝑗} 𝑞,𝑗 𝑑𝐴 

             + ∫ {𝜎𝑖𝑗(𝑠𝑖𝑗𝑘𝑙
𝑡𝑖𝑝

− 𝑠𝑖𝑗𝑘𝑙(𝑥))𝜎𝑘𝑙,1
𝑎𝑢𝑥}𝑞 𝑑𝐴

𝐴
                 (20) 

Also, for plane stress states  

𝜎33휀33
𝑎𝑢𝑥 = 𝜎33

𝑎𝑢𝑥휀33
𝑚 = 0                                                  (21) 

and 

𝜎33휀33
𝑎𝑢𝑥 = 0    𝑎𝑛𝑑     𝜎33

𝑎𝑢𝑥휀33
𝑚 ≠ 0                                 (22) 

𝜎33 = 𝜈31𝜎11 + 𝜈32𝜎22 − 𝐸33𝛼33𝛥𝑇                             (23) 

In addition, the thermal interaction integral is expressed as 

𝑀𝑡ℎ = ∫ {𝜎𝑖𝑗
𝑎𝑢𝑥휀𝑖𝑗,1

𝑡ℎ }
𝐴

𝑞𝑑𝐴 = ∫ {𝜎𝑖𝑖
𝑎𝑢𝑥[𝜆𝑖𝑖,𝑖(Δ𝑇) +𝐴

𝜆𝑖𝑖𝑇,1]} 𝑞𝑑𝐴                                                            (24) 

The relationship between J-integral and the mode I and mode 

II SIFs can be written as [31-32]: 

𝐺 = 𝐽 = 𝑐11𝐾𝐼
2 + 𝑐12𝐾𝐼𝐾𝐼𝐼 + 𝑐222𝐾𝐼𝐼

2                              (25) 

with 

𝑐11 = −
𝑎22

2
𝐼𝑚 (

𝜇1+𝜇2

𝜇1𝜇2
)                                                   (26) 

𝑐12 = −
𝑎22

2
𝐼𝑚 (

1

𝜇1𝜇2
) +

𝑎11

2
 𝐼𝑚 (𝜇1𝜇2)                         (27) 

𝑐22 =
𝑎11

2
𝐼𝑚(𝜇1 + 𝜇2)                                                    (28) 

The affection of two superimposed fields should be defined 

as [33] 

𝑀𝑙 = 2𝑐11𝐾𝐼
𝑎𝑢𝑥𝐾𝐼 + 𝑐12(𝐾𝐼

𝑎𝑢𝑥𝐾𝐼𝐼 + 𝐾𝐼𝐼
𝑎𝑢𝑥𝐾𝐼) +

       2𝑐22𝐾𝐼𝐼
𝑎𝑢𝑥𝐾𝐼𝐼                                                                (29) 

Substituting 𝐾𝐼
𝑎𝑢𝑥 = 1,𝐾𝐼𝐼

𝑎𝑢𝑥 = 0  and 𝐾𝐼
𝑎𝑢𝑥 = 0,𝐾𝐼𝐼

𝑎𝑢𝑥 = 1  
into Eq. (29), gives:   

{
𝑀1
𝑙 = 2𝑐11𝐾𝐼 + 𝑐12𝐾𝐼𝐼 (𝐾𝐼

𝑎𝑢𝑥 = 1 𝑎𝑛𝑑 𝐾𝐼𝐼
𝑎𝑢𝑥 = 0)

𝑀2
𝑙 = 𝑐12𝐾𝐼 + 2𝑐22𝐾𝐼𝐼 (𝐾𝐼

𝑎𝑢𝑥 = 0 𝑎𝑛𝑑 𝐾𝐼𝐼
𝑎𝑢𝑥 = 1)

} (30) 

 

3.3. Auxiliary Fields 

The general solution of the stress function 

 1 2x x    for orthotropic FGMs, distinguish 

equation can apply in tip of discontinuity [30] 

𝑎11
𝑡𝑖𝑝
𝜇𝑡𝑖𝑝4 − 2𝑎16

𝑡𝑖𝑝
𝜇𝑡𝑖𝑝3 + (2𝑎12

𝑡𝑖𝑝
+ 𝑎66

𝑡𝑖𝑝
)𝜇𝑡𝑖𝑝2 −

2𝑎26
𝑡𝑖𝑝
𝜇𝑡𝑖𝑝 + 𝑎22

𝑡𝑖𝑝
= 0                                                       (1) 

the roots 𝜇𝑖
𝑡𝑖𝑝

 
of equation (31) are unreal that could express 

as conjugate pairs configuration, 𝜇1
𝑡𝑖𝑝
, �̅�1
𝑡𝑖𝑝
    𝑎𝑛𝑑   𝜇2

𝑡𝑖𝑝
, �̅�2
𝑡𝑖𝑝

 

[30]. 

𝑎𝑖𝑗
𝑡𝑖𝑝

 and 𝜇𝑘
𝑡𝑖𝑝

 are the properties of material at the tip of crack, 

calculated by Eq .(31), respectively.(𝑋1, 𝑋2) are global 

coordinate system components,
1 2 ( , )x x  are local crack tip  

system components and  the local crack tip polar coordinate 

system (𝑟, 𝜃) can be expressed by 𝑥1 + 𝑖𝑥2 = 𝑟𝑒
𝑖𝜃, as 

depicted in Figure 2.  
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Fig. 1 An Orthotropic cracked FGM. 

 

4. EXTENDED FINITE ELEMENT METHOD (X-FEM) 

The satisfaction for a function 
kg  to verify (PU) condition 

in XFEM in the problem domain ΩPU
is  

∑ g
𝑘
(𝑥) = 1      (𝑥 ∈ Ω𝑃𝑈)

𝑚

𝑘=1
                                      (32) 

In addition, PU function fulfills the relevant condition for an 

arbitrary function    

∑ g
𝑘
(𝑥)𝜓(𝑥) = 𝜓(𝑥)      (𝑥 ∈ Ω𝑃𝑈)

𝑚

𝑘=1
                        (33) 

The shape functions of isoparametric finite element,
iN , 

fulfill Eq. (32), those functions are used as regional 

enhancement functions that give useful field through domain 

Ωenr  

𝜓(𝑥)  = ∑ N𝑖(𝑥)𝜓(𝑥)      (𝑥 ∈ Ω𝑒𝑛𝑟)𝑖∈𝑁𝑒𝑛𝑟
                   (34) 

Where 𝑁𝑒𝑛𝑟 defines enriched nodes set and 𝑎𝑖 are additional 

degree of freedoms. Producing of single function  𝜓 in a set 

of M enrichment functions, that give an analytical solution 

𝜙, 

𝑀 = {𝜓1, 𝜓2, … , 𝜓𝑚}                                                      (35) 

Results in producing of PU technique (44) for generating 𝜙  

𝜙 =∑ N𝑖(𝑥)(∑ 𝜓𝑚(𝑥)𝑎𝑖𝑚𝑚∈𝑀 )      (𝑥 ∈ Ω𝑒𝑛𝑟)
𝑖∈𝑁𝑒𝑛𝑟

           (36) 

The displacement of the domain are found from enriched 

XFEM and the standard FEM:   

𝒖 = 𝒖𝑭𝑬𝑴 + 𝒖𝑿𝑭𝑬𝑴                                                         (2)                                                                                                      

where 𝒖𝑋𝐹𝐸𝑀can be defined as  

𝒖𝑋𝐹𝐸𝑀 = 𝒖𝑡𝑖𝑝 + 𝒖𝐻𝑒                                                       (38) 

tip
u  and 

He
u  are the displacements coincided with the tip 

of crack enhancement and Heavy-set enhancement regions, 

sequentially. 

 

4.1. Heavy-Set (Heaviside) Functions for Cracks 

XFEM represents discontinuity through definite element via 

using Heavy-set enrichment function, 

𝐻(𝜉) = {
1      ∀𝜉 > 0
−1   ∀𝜉 < 0

                                                      (39) 

The sign distance function 𝜉(𝑥)
 
in point 𝒙 are expressed 

from its projection  𝒙𝚪  on crack, as illustrated in Figure (3).  

 

Fig. 3 Representation of the sign distance function [29]. 

 

4.2. Crack-Tip Enhancements (Enrichments) 

Application of the crack tip enhancements for precise 

representation of (σ) and (u) terms round tip of crack:  

𝒖𝑇𝑖𝑝 = ∑ 𝑁𝑖(𝒙)(∑ 𝑓𝑘(𝒙)�̂�𝑖𝑘𝑘∈𝐹 )𝑖∈𝑁𝑡𝑖𝑝                             (40) 

F  is tip enrichment functions term, 

𝐹 = {𝑓1, 𝑓2, … , 𝑓𝑚}                                                           (41) 

In isotropic FGMs, the enrichment functions of the 

homogeneous materials are used to enrich the solution[13]: 

𝐹 = {√𝑟 𝑠𝑖𝑛 (
𝜃

2
) , √𝑟  𝑐𝑜𝑠 (

𝜃

2
) , √𝑟 𝑠𝑖𝑛 (

𝜃

2
) 𝑠𝑖𝑛(𝜃) , √𝑟  𝑐𝑜𝑠 (

𝜃

2
) 𝑠𝑖𝑛(𝜃)}   (42) 

For orthotropic FGMs, the enrichment functions of non- 

homogeneous materials that used to enrich the solution in 

[18,31-32] are applied in the current research. 

 

 

5. NUMERICAL INTEGRATION 

The optimal meshing and suitable numeral of elements 

round crack tip are selected. Gaussian technique (Q4) is 
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applied for integration rather than use sub-triangulation 

method, to reduce time cost and to remove non-coincide 

integrated points about crack surfaces and tips with give 

same level of accuracy. Therefore, numerical integrity is 

adopted as a grid with a 2 × 2 Gaussian quadrature rule for 

whole domain. 

 

6. NUMERICAL EXAMPLE 

Consider (FGCM) plate with slanted crack (2a, a/W=0.1, 

L/W=1.0) under thermal loadings, illustrated in Figure 4. 

This example is adopted to check the predicted SIFs for 

thermal loadings with available solutions results in the 

literature. Thermos load applies (Figure 4a) in while the 

bottom and top edges are bound. Another load case supposes 

as corresponded mechanical load of thermal load (Figure 

4b).  

The following material properties for an isotropic case are 

considered  

𝐸0 = 1.0,        𝜐 = 0.3                                                      (43) 

𝐸(𝑋1) = 𝐸
0𝑒𝛽𝑋1 , 𝛼(𝑋1) = 𝛼0𝑒𝛿𝑋1 , 𝑣(𝑋1) = 𝑣0             (44) 

The nonhomogenity parameter 𝛽𝑎 equals to 0.5 and the 

exponentially changes of mechanical and thermal 

parameters are supposed over (𝑋1) axis, 

In addition, the following material properties for an 

orthotropic case are considered  

𝐸11
0 = 104 𝑀𝑃𝑎,         𝐸22

0 = 103 𝑀𝑃𝑎,   

𝜈12
0 = 0.3,                    𝐺12

0 = 1216 𝑀𝑃𝑎                                 (45) 

 

Fig. 4 Example Configuration Under 

 (a) Thermal, and (b) Mechanical Loads. 

and the variations are written as, 

𝐸11(𝑋1) = 𝐸11
0 𝑒𝛽𝑋1 ,       𝐸22(𝑋1) = 𝐸22

0 𝑒𝛽𝑋1 ,  

𝜈12(𝑋1) = 𝜈12
0 ,               𝐺12(𝑋1) = 𝐺12

0 𝑒𝛽𝑋1                    (46) 

𝛼11(𝑋1) = 𝛼11
0 𝑒𝛿1𝑋1 ,    𝛼22(𝑋1) = 𝛼22

0 𝑒𝛿2𝑋1                  (47) 

In addition, equivalent thermal and mechanical loadings are 

(휀11)𝑡ℎ = (휀22)𝑡ℎ = −𝛼(𝑋1)Δ𝜃(𝑋1) = 1.0                   (48) 

(휀22)𝑚𝑒𝑐ℎ = 𝜖̅ = Δ/2𝐿 = 1.0                                         (49) 

As shown in Figure 5, the current paper take a similar mesh 

of [29] in order to compare and to study the perform of Gauss 

quadrature rule (Q4) against using sub- triangular rule that 

used in the reference XFEM model (comparison is depicted 

in Table 1). 

 

Fig. 5 Mesh of the Square Plate. 

In addition, Table 1 illustrates comparison between the 

current work (XFEM model with 1600 nodes- Gauss 

quadrature rule (Q4)) and the reference conventional finite 

element model [26]. Also, in Table 2, results of the an 

orthotropic FG model [25] at 5336 DOFs and current 

solution depicts the efficiency of XFEM in comparison with 

traditional numerical techniques. Cleraly, Good agreements 

are noted in all values.  

TABLE 1. Normalized SIFs for Isotropic FGM Under 

Thermal Load. 
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TABLE 2. Normalized SIFs for Orthotropic FGM. 

θ 
N

o
rm

al
iz

ed
 

S
IF

 

Left right 

[2
9

] 

[2
5

] 

P
re

se
n
t 

w
o

rk
 

[2
9
 

[2
5
 

P
re

se
n
t 

w
o

rk
 

0
 

K
I/
K

0
 

0
.6

5
9
 

0
.6

6
6
3
 

0
.6

6
2
 

1
.4

2
9
 

1
.4

2
7
 

1
.4

4
7
4

7
6
 

K
II
/K

0
 

0
 

0
 

0
 

0
 

0
 

0
 

1
8
 

K
I/
K

0
 

0
.5

9
2
 

0
.5

9
9
 

0
.6

1
9
 

1
.3

2
9
 

1
.3

2
2
 

1
.3

0
9
8

2
7
 

K
II
/K

0
 

0
.2

7
7
 

0
.2

4
3
 

0
.2

4
6
 

0
.2

4
6
 

0
.2

1
5
 

0
.2

2
0
6

9
5
 

3
6
 

K
I/
K

0
 

0
.4

2
6
 

0
.4

1
6
 

0
.4

2
9
 

1
.0

1
 

1
.0

1
9
 

1
.0

1
7
0

2
8
 

K
II
/K

0
 

0
.3

9
8
 

0
.4

1
5
 

0
.4

0
0
 

0
.4

1
1
 

0
.4

0
8
 

0
.4

1
3
2

6
8
 

5
4
 

K
I/
K

0
 

0
.1

9
4
 

0
.1

8
 

0
.1

9
5
 

0
.5

8
7
 

0
.5

9
9
 

0
.5

8
9
4

9
9
 

K
II
/K

0
 

0
.4

3
5
 

0
.4

3
8
 

0
.4

3
5
 

0
.4

4
3
 

0
.4

4
7
 

0
.4

4
3
9

4
1
 

7
2
 

K
I/
K

0
 

0
.0

2
7
 

0
.0

0
6
 

0
.0

2
7
9

0
4
 

0
.2

1
6
 

0
.2

1
7
 

0
.2

1
5
4

3
3
 

K
II
/K

0
 

0
.2

7
 

0
.2

8
2
 

0
.2

7
0
6

1
3
 

0
.3

0
5
 

0
.2

9
 

0
.3

0
3
8

5
8
 

 

It can be noted in Figure 6-7, where the biggest energy 

release rate relates at horizontal crack. Also, in Figure 7, 

Clearly there is good agreement between the current work 

and reference [29]. For further check out the effect of the 

radius of J integral and enrichment domain size on 

normalized SIFs is illustrated in Figure 8 a-b. In Figure (6-

8), It is clear that J-integral domain value  significantly has 

not influence the current study. It is clear that the size of J-

integral domain significantly does not affects the solution. 

Generally, energy release rate decreased when crack angles 

increased.  

 

 

Fig. 6 Energy Release Rate in Isotropic FGM. 

 

Fig. 7 Energy Release Rate in Orthotropic FGM. 
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(b) 

Fig.8 a-b  Normalized SIFs
 
Versus Radius of J-Integral for 

Isotropic FGM  

7. CONCLUSIONS 

XFEM are adopted for crack analysis in FGMs under 

thermal load. Crack tip enhancements are applied to give 

behavior of stress field in discontinuity tips. Mixed-mode 

SIFs are calculated in isotropic and anisotropic FG Plate. 

Gaussian technique (Q4)  is applied to numerical integration 

rather than used sub-triangulation method to reduce time 

cost and to remove non-coincide integrated points about 

crack surfaces and tips with give same level of accuracy. It 

is clear that Gauss quadrature rule (Q4) gives approximately 

the same accuracy of  sub-triangulation technique at same 

DOFs; this gives an important explanation, that the 

enrichments functions play a big and prominent role on the 

results. In addition, comparisons are implemented between 

the proposed method results and the reference results 

available in the literature. Energy release rate decreased 

when crack angles increased. In addition, it can be noted 

where the biggest energy release rate relates at horizontal 

crack . Good agreement and high convergence are noted. 
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